Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vox Sang ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643983

RESUMO

BACKGROUND AND OBJECTIVES: Platelet transfusions are increasing with medical advances. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. Our study's aim was to develop a novel platelet transfusion model stored in mouse plasma that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detectable in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet-rich plasma (PRP) collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and adenosine diphosphate, agreeable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. CONCLUSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified PRP collection protocol with maximum storage of 1 day for an 'old' unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014145

RESUMO

BACKGROUND: Platelet transfusions are increasing with advances in medical care. Based on FDA criteria, platelet units are assessed by in vitro measures; however, it is not known how platelet processing and storage duration affect function in vivo. To address this, we developed a novel platelet transfusion model that meets FDA criteria adapted to mice, and transfused fresh and stored platelets are detected in clots in vivo. STUDY DESIGN AND METHODS: Platelet units stored in mouse plasma were prepared using a modified platelet rich plasma collection protocol. Characteristics of fresh and stored units, including pH, cell count, in vitro measures of activity, including activation and aggregation, and post-transfusion recovery (PTR), were determined. Lastly, a tail transection assay was conducted using mice transfused with fresh or stored units, and transfused platelets were identified by confocal imaging. RESULTS: Platelet units had acceptable platelet and white cell counts and were negative for bacterial contamination. Fresh and 1-day stored units had acceptable pH; the platelets were activatable by thrombin and ADP, aggregable with thrombin, had acceptable PTR, and were present in vivo in clots of recipients after tail transection. In contrast, 2-day stored units had clinically unacceptable quality. DISCUSSION: We developed mouse platelets for transfusion analogous to human platelet units using a modified platelet rich plasma collection protocol with maximum storage of 1 day for an "old" unit. This provides a powerful tool to test how process modifications and storage conditions affect transfused platelet function in vivo.

3.
Haematologica ; 108(10): 2639-2651, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078267

RESUMO

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.


Assuntos
Isoanticorpos , Reticulócitos , Humanos , Camundongos , Animais , Doadores de Sangue , Eritrócitos , Fatores de Risco
4.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747702

RESUMO

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increase RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.

5.
Haematologica ; 103(2): 361-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29079593

RESUMO

Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.


Assuntos
Eritrócitos/metabolismo , Hipoxantina/sangue , Hipóxia , Purinas/metabolismo , Animais , Preservação de Sangue/métodos , Desaminação , Transfusão de Eritrócitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Ther Drug Monit ; 34(4): 398-405, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22735673

RESUMO

BACKGROUND: Polymyxin B is an old antibiotic with increasing clinical relevance in the treatment of multidrug-resistant Gram-negative bacterial infections. However, current dosing regimens are largely empiric as clinical pharmacological characterization of the drug has been hindered by the lack of assays to measure polymyxin B in human plasma. METHODS: A high-performance liquid chromatography-mass spectrometry assay was developed to quantify polymyxin B1 and B2 in human plasma using pure calibrators. After purification with a solid-phase extraction column, polymyxin B1 and B2 were separated on a C18 column by gradient chromatography with an overall runtime of 12 minutes. Polymyxin B1 and B2 were ionized by positive electrospray ionization, and the resulting ions specific to polymyxin B1 and B2 were monitored (selected ion recording). RESULTS: The dominant ions produced were (M + 2H) at m/z 602.6 and 595.5 for polymyxin B1 and polymyxin B2, respectively. The assay was linear between concentrations of 100 and 2500 ng/mL, with interday precision of 5.9% and 3.4% at 100 ng/mL and 5.3% and 4.0% at 2000 ng/mL for polymyxin B1 and polymyxin B2, respectively. Accuracy was 80.2% and 82.2% at 100 ng/mL and 99.9% and 109.6% at 2000 ng/mL for polymyxin B1 and polymyxin B2, respectively. No interference from other drugs commonly administered with polymyxin B was detected. The performance of the assay is affected by gross hemolysis and hyperlipemia. The method was successfully applied to patient samples. Interestingly, in a single patient the ratio of B1 and B2 did not change over a period of 12 hours after administration of the drug. CONCLUSIONS: A simple method for the simultaneous measurement of polymyxin B1 and polymyxin B2 in human plasma is described, which has the potential to optimize clinical use of this valuable antibiotic by permitting pharmacokinetic studies and therapeutic drug monitoring.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Polimixinas/análogos & derivados , Adulto , Antibacterianos/sangue , Antibacterianos/química , Monitoramento de Medicamentos/métodos , Estabilidade de Medicamentos , Feminino , Humanos , Polimixinas/sangue , Polimixinas/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...